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ABSTRACT

Lincoln Laboratory is investigating several concepts to im-
prove airborne Ground Moving Target Indication (GMTI)
performance as part of the Knowledge Aided Sensor Sig-
nal Processing and Expert Reasoning (KASSPER) Pro-
gram. Some of these concepts incorporate ideas currently
used for synthetic aperture radar (SAR) imagery and these
require longer coherent processing intervals (CPIs) than
what is typical for GMTI processing. Other concepts are
more general and are applicable to any processing inter-
val (long or short). This paper examines these concepts in
detail and demonstrates their utility with synthetic radar
data and actual data collected with the Tuxedo sensor.

1. INTRODUCTION

Intelligence, Surveillance and Reconnaissance (ISR) sys-
tems are faced with a formidable task of locating and track-
ing all ground-based vehicles within the coverage area of
the radar. Typically stationary vehicles are located with
synthetic aperture radar (SAR) imagery and moving targets
are located and tracked with Ground Moving Target Indi-
cation (GMTI). Most GMTI architectures employ a tech-
nique to reduce clutter such as the displaced phase center
array (DPCA) technique or space-time adaptive processing
(STAP). In general STAP provides better clutter nulling ca-
pabilities than the DPCA technique [1]. However, simpli-
fying assumptions are often made in the development of
STAP algorithms, such as homogeneous clutter and target-
free training data. Unfortunately, in modern military appli-
cations existing ISR systems are faced with complex het-
erogeneous clutter, clutter discretes and dense target envi-
ronments, causing false alarms and missed detections. As a
result, in some scenarios the performance of existing STAP
and constant false alarm rate (CFAR) algorithms may fall
short of what is predicted by theory. The most challeng-
ing problem for GMTI systems is the detection and tracking
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of slow movers– targets with a small velocity component
along the radar line of sight.

These GMTI shortcomings are currently under investi-
gation by Lincoln Laboratory as part of the KASSPER Pro-
gram. In this paper we explore several algorithm concepts
to improve GMTI performance. Recently, there has been
interest in concepts that involve synergies between GMTI
and SAR processing modes. A typical GMTI radar mode is
characterized with a relatively large aperture, narrow band-
width and short CPI duration. As such, we can represent
GMTI modes in the red shaded area in Figure 1. In con-
trast a typical SAR radar mode is characterized with a rel-
atively small aperture, wide bandwidth and long CPI dura-
tion. Hence we can represent SAR modes in the blue shaded
area in Figure 1. As previously mentioned ISR systems use
GMTI radar modes to locate moving targets and use SAR
imagery to locate stationary targets. An intuitive compro-
mise for locating slow moving targets is highlighted in the
green shaded area. In Section 4 we explore this space by
considering a CPI duration much longer than what is typi-
cally used in GMTI. By adopting a longer GMTI CPI length
we must consider range and Doppler walk. In fact the con-
cept we explore in Section 4 will exploit the difference in
Doppler walk between stationary clutter and ground mov-
ing targets to identify slow movers.

In Section 5 we introduce a variation onpower selective
training [2] which we callpower variable training. Our ap-
proach addresses the overnulling nature ofpower selective
training. Section 6 describes a multi-channel adaptive SAR
technique developed for the Foliage Penetration (FOPEN)
Program [3] to detect ground moving vehicles below tree
canopies. The principles in this technique are general and
can also be applied to other GMTI systems. In Section 7 we
describe theextended array receiverconcept that provides
narrow two-way (transmit and receive) beampatterns over a
wide coverage area. Finally in Section 8 we conclude with
a summary.



2. BASELINE STAP

In a previous paper [4] we introduced a baseline GMTI pro-
cessing architecture for the KASSPER Program. The base-
line GMTI processing stream consists of five operations:

1. adaptive beamform,
2. pulse compression,
3. Doppler filter,
4. STAP and
5. detection.

The adaptive beamform operation suppresses unwanted
interference appearing in the radar system frequency band
and reduces the number of spatial degrees-of-freedom (DOF).
Pulse compression is performed in the usual manner by con-
volving the pulse compression filter weights with the in-
coming range samples. Doppler filtering is performed using
two FFT operations, one for pulses1 . . . N − 1, (whereN
is the number of pulses in the CPI) and the other for pulses
2 . . . N . This Doppler filtering process prepares the data
for a post-Doppler PRI-staggered STAP operation [1]. The
training strategy for this baseline STAP operation chooses
equally-spaced range samples within each Doppler bin. From
this training set, the sample estimate of the covariance ma-
trix is computed with a diagonal loading term selected to
satisfy a white noise gain constraint [5]. The final opera-
tion consists of a sliding split-window greatest-of excision
CFAR algorithm followed by an adaptive sidelobe blanker
operation [6].

3. TUXEDO DATA

Some of the KASSPER signal processing concepts proposed
by Lincoln Laboratory are based on an extended GMTI CPI-
length (greater than 250 msec). To evaluate GMTI process-
ing concepts involving these longer CPIs we are using data
collected with the Tuxedo sensor in May of 1999 at Camp
Navajo, Arizona. The Tuxedo Sensor is an experimental
airborne X-band radar system, operated by Lockheed Mar-
tin, that is capable of recording digitized data in a variety of
SAR and GMTI modes. During the data collection events
at Camp Navajo the Tuxedo Sensor recorded data from all
three phase centers in the antenna array for approximately
a minute. In these events five military vehicles equipped
with GPS sensors drove on a network of roads while record-
ing their position (see Figure 2). The long recording in-
tervals, SAR imagery and vehicle ground truth make the
Tuxedo data set suitable for evaluating several of our ad-
vanced GMTI concepts. In Table 3 we list the pertinent sys-
tem parameters for the Tuxedo sensor in its low resolution
GMTI mode of operation.

Figures 3, 4 and 5 depict outputs from the baseline pro-
cessing stream using the Tuxedo data. The specific data set

Table 1: System Parameters for the Tuxedo Sensor
Parameter Value

Center Frequency 9.6 GHz
Bandwidth 66 MHz

PRF 1,400 Hz
Number of Transmit Apertures 1
Number of Receive Apertures 3
Azimuth Beamwidth Aperture 3.6◦

Elevation Beamwidth Aperture 9.1◦

Polarization HH
A/C Heading 290◦

Depression Angle 15◦

Recorded Time ≈ 1 minute

processed has been designated by Lockheed Martin as Pass
Number 1960. In this data set five military vehicles traveled
at low speeds, approximately 5 mph, in the grid of roads
designated in Figure 2. Figure 3 depicts the power from
one of the three sensor channels after Doppler processing
using 512 consecutive pulses of data. As expected there
are strong radar returns from building roof-tops and other
clutter discretes at lower Doppler speeds. Figure 4 depicts
the output power after the PRI-staggered STAP operation.
The dark vertical stripes in this figure correspond to Doppler
bins in which the training data contained significant contri-
butions from clutter discretes. For these Doppler bins the
resultant adaptive weight vector overnulled the clutter and
produced the low power outputs. In many of the remaining
lower speed Doppler bins the clutter discretes appearing in
Figure 3 were not suppressed sufficiently by the STAP op-
eration and are still visible in Figure 4. Finally in Figure 5
we illustrate the output data after the CFAR normalization
process. The detections and false alarms are each marked
with a large ‘x’ superimposed over the range-Doppler cells
that remain after the adaptive sidelobe blanking operation.
T, F, and H mark the range where there are actual targets
(Two-ton truck, Fuel truck and HMMWV) to detect. Notice
there are many false alarms due to the clutter discretes in
the Camp Navajo area. The stream of detections at approx-
imately 22.6 kilometers in range corresponds to reflections
from a train that happened to pass through the targeted area
at the same time radar data was recorded.

The results in this section are probably typical of GMTI
systems that make no use of any prior knowledge of the sort
that we wish to exploit in the KASSPER program.

4. MOVING TARGET FOCUSING

This section describes a concept for improving GMTI per-
formance using an approach adopted from SAR imaging of
moving targets [7]. Typical SAR image processing focuses
energy using a stationary target model. Targets moving in



the cross-range direction will appear smeared and result in
significant losses in target-to-clutter power, see Figure 6.
The techniques proposed in [7] refocuses the SAR image
based on the velocity of the moving target, see Figure 7.
Obviously in a practical application we do not know the
target velocity a priori, therefore, several refocused images
may be required to detect the range of speeds typical for
ground moving vehicles. A similar approach can be used
in GMTI processing when the CPI is long. We call this ap-
proachmoving target focusing.

A derivation for this approach proceeds as follows. Con-
sider an airborne GMTI platform with a side-looking ar-
ray moving with velocityvAX in the cross-range direction.
Also consider a ground moving vehicle moving at constant
speed. Designate the ground target cross-range velocity com-
ponent asvTX and slant-range velocity component asvTS .
We use these velocity components to define a new quantity,

γ =
√

(vAX − vTX)2 + v2
TS . (1)

that represents the norm of the relative velocity vector be-
tween the airborne platform and the ground moving target.
If we assume the ground target moves with constant veloc-
ity and is located at a rangeR at timet = 0 then expressions
for range and range rate (or Doppler velocity) are given as
follows,

r(t) =
√

R2 + 2Rv2
TSt + γ2t2 (2)

ṙ(t) =
Rv2

TS + γ2t

r(t)
. (3)

For shorter CPIs (on the order of tens of milliseconds)
and narrow bandwidth waveforms (between 10-20 MHz)
range walk and Doppler walk of the target is negligible. In
fact, for GMTI waveforms with these characteristics it is
convenient to approximate the range of the ground moving
target asr(t) ≈ R and the range rate asṙ(t) ≈ vTS . How-
ever, by adopting a longer GMTI CPI we must consider the
effects of range walk and Doppler walk.

Consider a longer GMTI CPI, on the order of one second
(a ground moving target is typically considered coherent for
up to a second). For a narrow bandwidth, sayBW = 10
MHz, and a hamming weighted pulse compression filter the
range resolution is given by

∆r =
1.81
BW

c

2
≈ 27m . (4)

wherec is the speed of light. Assuming a ground target has a
maximum range rate of about 25 m/sec then over a process-
ing interval of one second the ground target does not tra-
verse more than two range resolution cells. Consequently,
it is fair to assume the effects of range walk are minimal.
In ongoing research we would like to consider wider band-
widths for which range walk is no longer negligible.

Assuming a hamming weighted Doppler filter opera-
tion, the Doppler resolution for a CPI of durationT is given
by

∆ṙ =
1.81
T

λ

2
. (5)

whereλ is the wavelength. Doppler walk can be neglected
if the range rate of the ground target does not change more
than the Doppler resolution over the CPI durationT , alter-
natively for largeR,

T <

√
1.81R

γ2

λ

2
. (6)

Figure 8 plots the limit on CPI time for Doppler walk given
in equation (6). The three curves represent different ground
target velocities. Notice, even at a slant range of 60 km the
CPI time limit is less than a quarter of a second. Therefore
for a one second CPI time there is considerable Doppler
walk over the CPI.

Figure 9 plots the number of Doppler resolution cells
that a broadside target traverses in a one second interval.
Again, there are three curves representing different target
velocities. The middle curve represent stationary targets and
the other two curves represent moving targets. The differ-
ences in the number of Doppler resolution cells in the three
curves represents the phenomenon we would like to exploit
in moving target focusing.

A target’s Doppler walk over several Doppler resolution
cells can be corrected (or focused) such that the target ap-
pears in a single Doppler resolution cell. For a narrowband
waveform we are able to correct for Doppler walk with the
following complex multiplier on each pulse in the CPI

exp
[
j2πγ2t2

λR

]
. (7)

From equation (7) we see that the correction term varies
with the target velocity orγ. The moving target focusing
concept involves refocusing the radar data for different tar-
get velocity hypotheses to determine if a target is stationary
(i.e. clutter) or moving.

For maximum signal-to-noise ratio (S/N) we would like
to correct for each possibleγ but this is costly. Figure 10 il-
lustrates the response for a bank of five focusing filters over
a range ofγ or target velocities. Note that the S/N for a
target can vary more than 7 dB depending on the target ve-
locity but this variation can be kept to only 1 dB by choos-
ing the best among five different corrections. This property
can be used to distinguish moving targets from stationary
targets by examining the outputs of the filter bank. Alter-
natively, it has been noted in [10] that the focus of moving
targets in SAR images may be obtained with higher order
moments of the phase error. What is remarkable about this
concept is that we are able to distinguish targets that move



in cross-rangefrom stationary targets. Recall that tradition-
ally GMTI processing enables us to detect targets that move
in slant-range. Thus moving target focusing provides a new
capability for detecting moving targets which are not other-
wise detectable with traditional GMTI processing.

5. POWER VARIABLE TRAINING

Power selective training is an appealing STAP training method
for airborne moving target indication (AMTI) [2]. But power
selected training leads toovernulling which increases the
minimum detectable velocity. This is acceptable in the AMTI
problem since most airborne targets typically move at con-
siderable speeds, but it is undesirable in the GMTI applica-
tion. However, we can get the advantages of power selective
training in a GMTI processor without overnulling by us-
ing a more intelligent and effective STAP training method.
We call this new techniquepower variable training without
over-nulling.

Consider the notional plot in Figure 11, which repre-
sents the received radar power as a function of range for a
given Doppler bin. For a multi-channel radar receiver this
plot represents the total received power across all channels.
If we definexi(r) to represent the complex voltage received
on theith channel for therth range resolution bin then the
plot in Figure 11 depictse(r) =

∑
i xi(r)xi(r)∗ where∗

denotes complex conjugate. In power variable training we
initially choose candidate training data from theK range
samples that correspond to the largest values ofe(r), high-
lighted in red on Figure 11.

Subsequently, we estimate the angle of arrival for each
of the candidate training samples and determine which sam-
ples are close in angle to what is predicted for main beam
clutter. Those training samples whose angle estimates are
close to the predicted angle for clutter are retained while
all others are rejected. A similar rejection procedure is de-
scribed in [8]. The remainingK ′ training samples, where
K ′ ≤ K, are used to estimate the following clutter-only
covariance,

Rc =
1

K ′

K′∑
i=1

xixH
i − σ2I (8)

whereH denotes complex conjugate transpose. The matrix
σ2I on the right-hand side of equation (8) represents an es-
timate of the covariance matrix of the system noise, in this
mannerRc represents an estimate of the clutter alone de-
void of system noise.

In the conventional power selected training, we would
have usedRc as the estimated covariance matrix, with some
diagonal loading. But in the power variable training ap-
proach we vary the scale ofRc according to the energy in
the sample we are going to try to null.

As indicated in Figure 11, for a given Doppler bin we
“tile” the dynamic range ofe(r) into different power lev-
els. For each “tile” or range of energy levels we compute
a different adaptive weight vector whose clutter null depth
matches the clutter power in that tile. Specifically, for tile
m we first compute the scalar

βm =
ēm − σ2N

tr[Rc]
(9)

whereēm is the energy level in the center of tilem andN
is the dimension ofRc. Next, we make an estimate of the
clutter plus noise covariance matrix appropriate for tilem,

Rm = βmRc + σ2I . (10)

Finally, we compute an adaptive weight vector with diag-
onal loading. Using an adaptive matched filter (AMF) [9]
normalization the adaptive weight vector for tilem is,

wm =
[Rm + δI]−1v√
vH [Rm + δI]−1v

. (11)

wherev is the space-time steering vector andδ is diagonal
loading level.

To illustrate the benefits of PVT we processed the same
Tuxedo data processed in Section 3. Figure 12 shows the
output power after the power variable STAP strategy. No-
tice that clutter reflections from rooftops visible in Figure 4
are effectively eliminated in Figure 12. Furthermore, Figure
13 depicts the output of the detection operation following
power variable training. Notice there are significantly fewer
false alarms in Figure 13 relative to Figure 5.

6. MULTI-CHANNEL ADAPTIVE SAR

In recent work at Lincoln Laboratory, researchers have ex-
plored a multi-channel adaptive SAR processing approach
for detecting moving targets in SAR images [3]. This tech-
nique was demonstrated using data collected with a UHF
antenna array testbed. It consists of first forming a separate
SAR image on each of the antenna array channels. From
these SAR images, data vectors are generated by concate-
nating identical pixels in range and cross-range from each
channel in the antenna array. Next, a set of training vec-
tors is identified that surrounds a given set of test vectors.
The training vectors are used to estimate a covariance ma-
trix of the background clutter and noisêR. The test vectors,
denotedx(r, c), are used witĥR to compute the change de-
tection statistic that is compared to a threshold

x(r, c)HR̂−1x(r, c) > T (12)

All threshold crossings are identified as potential targets.
The covariance estimation is then repeated with such poten-
tial targets excised from the training and change detection



is repeated. In this manner the effect of target self-nulling is
reduced.

This multi-channel adaptive SAR procedure produced
impressive results with the UHF testbed data in [3]. The
work is general enough so that it is applicable to other multi-
channel radar systems that have the ability to implement
long dwells with wide bandwidth waveforms. However,
there are a few open issues that should be addressed be-
fore adopting this approach. First, note that the change de-
tection statistic is invariant to array calibration errors, as it
does not require a steering vector. For well-calibrated arrays
the adaptive matched filter (AMF) approach outperforms
the change detection approach. Therefore, with increasing
levels of calibration there is a crossover point at which the
performance of the AMF approach outperforms the change
detection approach. Another issue is related to the com-
putational cost associated with SAR image formation. The
results in [3] implemented complete SAR image formation
with polar-reformatting for each phase center on the antenna
array. Implementing this approach on a real-time processor
would be challenging. Furthermore, for shorter CPIs (on
the order of a second) and narrower bandwidths (around 50
MHz) it may be possible to implement simpler processing
(relative to SAR image formation on each phase center) at
a much lower computational cost with minimal loss in per-
formance.

7. EXTENDED ARRAY RECEIVER

The extended array receiver concept is not new but can pro-
vide GMTI performance benefits at the cost of additional
radar hardware. In this concept separate orthogonal wave-
forms are simultaneously transmitted from each channel in
the antenna array. The entire antenna array is used on re-
ceive and separate parallel signal processing streams are
used to pulse compress the individual orthogonal waveforms.
Once pulse compressed, returns from the orthogonal wave-
forms are coherently combined.

The benefits of this approach are easily understood with
the series of plots in Figures 14, 15 and 16. If the entire
antenna array is used for transmit and receive then the two-
way beam pattern is narrow but only in a small coverage
area, illustrated in Figure 14. To overcome the coverage
issue some radar systems spoil the transmit beam to illumi-
nate a wider area. A number of different receive beams can
be simultaneously formed, as shown in Figure 15. How-
ever, in this approach the two-way beam patterns have been
broadened.

The extended array receiver concept enables forming
two-way beam patterns, as shown in Figure 16, which are
just as narrow as those in Figure 14. But these beam pat-
terns are all available simultaneously, as in Figure 15, be-
cause they are determined by how we choose to process the

received data.
There are several open issues with the extended array

receiver concept. First, this approach assumes that multi-
ple waveforms, approximately orthogonal over delay and
Doppler, can be synthesized. In practice it may not be prac-
tical to generate waveforms that are nearly orthogonal. There-
fore, we need to investigate how nearly orthogonal the wave-
forms need to be. As a result of using waveforms that are
not strictly orthogonal the receiver noise floor will be ele-
vated. Another issue is related to the processing hardware
architecture. Pulse compressing multiple orthogonal wave-
forms on each channel of the receiver can be a daunting
task. As part of our architecture study Lincoln Laboratory
will evaluate several options to meet the demands for this
application. Finally, the ability to synchronize the orthogo-
nal waveforms for proper coherence needs to be examined.

8. SUMMARY

Detecting ground vehicles is challenging in real-world ap-
plications. Modern GMTI systems are plagued with ex-
cessive false alarms, missed target detections (slow moving
vehicles), dense target scenarios and heterogeneous clutter
environments. This paper explored several approaches to
improve GMTI performance that include: moving target fo-
cusing for long CPIs, excision of training data far from the
clutter ridge, power variable training without overnulling,
multi-channel adaptive SAR and an extended array receiver
concept. Our results illustrate improved detection perfor-
mance of low Doppler targets using moving target focusing
and significant improvements in false alarms with power
variable training. In ongoing research Lincoln Laboratory
will explore the open issues associated with multi-channel
adaptive SAR and the extended array receiver concept.

9. REFERENCES

[1] J. Ward, “Space-Time Adaptive Processing for Air-
borne Radar,”MIT Lincoln Laboratory Technical Re-
port 1015, 1994.

[2] D. Rabideau and A. Steinhardt, “Improved adaptive
clutter cancellation through data-adaptive training,”
IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 35, pp. 879-891, 1999.

[3] A. Yegulalp, “FOPEN GMTI using multi-channel adap-
tive SAR,” Proceedings of the Adaptive Sensor Array
Processing Workshop, March 2002.

[4] D. Kreithen, N. Pulsone, C. Rader and G. Schrader,
“The MIT Lincoln Laboratory KASSPER Algorithm
Testbed and Baseline Algorithm Suite,”Proceedings of



the Sensor Array and Multichannel Signal Processing
Workshop, August 2002.

[5] N. L. Owsley, “Enhanced Minimum Variance Beam-
forming,” in Underwater Acoustic Data Processing, Ed-
itor Y. Chan, Kluwer Academic Publishers, 1989.

[6] C. D. Richmond, “Statistical Performance Analysis of
the Adaptive Sidelobe Blanker Detection Algorithm,”
Conference Record of the Thirty-First Asilomar Con-
ference on Signals, Systems and Computers,1997.

[7] J. Jao, “Theory of synthetic aperture radar imaging of a
moving target,”IEEE Transactions on Geoscience and
Remote Sensing, vol. 39, pp. 1984-1992, 2001.

[8] S. M. Kogon and M. A. Zatman, “STAP Adaptive
Weight Training using Phase and Power Selection Cri-
teria,” Conference Record of the Thirty-Fifth Asilomar
Conference on Signals, Systems and Computers,2001.

[9] F. C. Robey, D. R. Fuhrmann, E. J. Kelly and R. A.
Nitzberg, “A CFAR Adaptive Matched Filter Detector,”
IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 28, pp. 208–216, 1992.

[10] J. R. Fienup, “Detecting Moving Targets in SAR Im-
agery by Focusing,”IEEE Transactions on Aerospace
and Electronic Systems, vol. 37, pp. 794–808, 2001.

STAP

SAR

Aperture

Bandwidth

CPI

Figure 1: Radar Processing Modes: GMTI and SAR

Ground Moving 
Vehicles

Buildings

Railroad

Figure 2: Camp Navajo, Arizona

R
an

g
e 

[k
m

]

21.5

22.0

22.5

23.0

Radial Velocity [m/sec]
-10 -5 50 10

Figure 3: Tuxedo data after Doppler processing in the Base-
line GMTI processing stream

R
an

g
e 

[k
m

]

21.5

22.0

22.5

23.0

Radial Velocity [m/sec]
-10 -5 50 10

Figure 4: Tuxedo data after the STAP operation in the Base-
line GMTI processing stream



R
an

g
e 

[k
m

]

Radial Velocity [m/sec]
-10 -5 50 10

21.5

22.0

22.5

23.0

Train

Moving Target
Simulator

Figure 5: Tuxedo data after detection processing in the
Baseline GMTI processing stream

-6 -4 -2 0 2 4 6
-25

-20

-15

-10

-5

0

5

10

15

20

25

R
es

p
o

n
se

 [d
B

]

Radial Velocity [m/sec]

Stationary
in cross-range

Moving
in cross-range

Figure 6: Processed assuming no motion in cross-range

R
es

p
o

n
se

 [d
B

]

Radial Velocity [m/sec]

-6 -4 -2 0 2 4 6
-25

-20

-15

-10

-5

0

5

10

15

20

25
Stationary

in cross-range

Moving
in cross-range

Figure 7: Processed with correction for motion in cross-
range

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Range [km]

T
im

e 
[s

ec
]

γ = 225
shorter CPI limit

γ = 175 
longer CPI limit

Figure 8: Limit on CPI time,T , to prevent Doppler walk

20 40 60 80 100
0

50

100

150

Range [km]

D
o

p
p

le
r 

C
el

ls

γ = 225 
wide doppler spread

γ = 175
narrow doppler spread

Figure 9: Number of Doppler resolution cells a broadside
target traverses in one second

S
N

R
 L

o
ss

 [d
B

]

0.9 0.95 1 1.05 1.1
-7

-6

-5

-4

-3

-2

-1

0

Normalized Relative Velocity AXvγ=γ

175

189

200

214

225

γ [m/sec]

Figure 10: The response of a bank of focusing filters



Range

C
lu

tt
er

 P
o

w
er

 

Tile “m”

Training

Figure 11: Power variable training

R
an

g
e 

[k
m

]

Radial Velocity [m/sec]
-10 -5 50 10

21.5

22.0

22.5

23.0

Figure 12: Tuxedo data after performing the power variable
training STAP operation

Radial Velocity [m/sec]
-10 -5 50 10

21.5

22.0

22.5

23.0

R
an

g
e 

[k
m

]

Train

Moving Target
Simulator
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